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July 1999: The Chandra X-ray Observatory is Launched

August 1999: Chandra discovers the extended kpc-scale jet of
PKS 0637-752 during orbital activation and checkout phase

Chartas+ 2000, Schwartz+ 2000



The Quasar Surprise!

Low-power, FR | type jefts:

Single radio-opftical-Xray spectrum

Powerful, “Quasar’” Jets like PKS

0637-752:

Anomalously High X-rays

Godfrey+ 2012
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Why is this problem important? (Spoiler Slide!)

» Because we don’t know the speed, particle makeup, energy, and
momentum of these jets

> This ignorance is partly why “AGN heating” in galaxy evolution is very
ad-hoc and poorly understood — we cannot quantify it without
knowing some of the above

To explain the X-rays in Quasar Jets, we come down to two models:

MODEL 1 — Requires very powerful jets (near or super-Eddington) which
are narrow “pencil beams”, highly relativistic on the kpc scale. Total
(4 T integrated) emission on the kpc scale is much lower than what
you get from the core

MODEL 2 - Suggests low-power jets that nonetheless are highly efficient
multi-TeV particle accelerators. Jets are slow on kpc scales, and kpc-
scale radiative output may rival or exceed the core emission, with
implications for blazar heating.



Anomalously Bright Quasar Jets: One of Chandra’s major discoveries,
and an ongoing mystery.
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X-ray Jets
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Dozens of quasar jets with high
kpc-scale X-ray emission
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What is the Origin of the X-rays...

... and what can it tell us about Jet Physicse

Synchrotron Radiation
- Leptonic: second electron energy distribution
[Jester+ 2006;Uchiyama+ 2006; Hardcastle 2006]
- Hadronic Models [Aharonian+ 2002]

Inverse Compton Upscattering
- Synchrotron Self-Compton
- “External” Compton with the CMB photon field (aka “IC/CMB”)

BOTH possible IC models were ruled out in the original case of PKS 0637
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D

Quasar Jets are frequently But Radio surveys have long
observed to be highly relafivistic suggested that on kiloparsec
on sub-parsec scales probed by scales the jet is only mildly
VLBl with [ =10-50 relativistic with [ =1.2-1.5

[e.g., Arshakian & Longair 2004]

However, if you assume that powerful quasar jets remain highly

relativistic on kpc scales, then IC/CMB works.
[Celotti+ 2001, Tavecchio+2000]
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The Essential Problem.

IC/CMB requires near or super-Eddington jets in some cases,

and small beaming angle implies longer jets than observed.
-2 In many cases the IC/CMB fit is an “uncomfortable” one

We cannot definitively show that IC/CMB or synchrotron
is a better mechanism based on SED fits.
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The Test: How to Rule out IC/CMB
[Georganopoulos+ 2006]

The IC Component is a copy
of the synchrotron, shifted in
frequency and luminosity.
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The Test: How to Rule out IC/CMB

[Georganopoulos+ 2006]

The IC Component is a copy
of the synchrotron, shifted in
frequency and luminosity.

That shift is parameterized
ONLY by B/ d, no other free
parameters.
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The Test: How to Rule out IC/CMB
[Georganopoulos+ 2006]
The IC Component is a copy

of the synchrotron, shifted in i
frequency and luminosity.
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That shift is parameterized
ONLY by B/ d, no other free
parameters.
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Case 1: 3C 273

Resolution Issue: From core to end of the
jetis ~ 24" - even the 68% PSF at 3 GeV is
>10x this scale (few tenths of a degree)

However:
> IC/CMB emission of the 3C273 should be

quite hard and completely non-
variable.
» The core is known to be soft ([ ~2.7),

and

We can thus stack the

parts of the 3C 273
lightcurve when the
blazar is low to get the

lowest upper limit, which
applies to both the core
+ the jet.
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Case 1: 3C 273

IC/CMB is ruled out as the source of the X-rays.
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Case 2: PKS 0637-752

PKS 0637-752

e total jet
knot wk7.8
Both 3C 273 and PKS
0637-752 upper limits
imply relatively low
Doppler factors in
the large-scale jet
(6<5)
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Understanding Jet Physics on Large Scales

> What are the speeds of jets on the kpc scale?
- Proper Motions with VLA, HST can only probe jets within ~500
Mpc, but do give upper limits on &
(e.g., M87, 3C 273, 3C 264, 3C 346 as part of HST program)
- However, detection of IC/CMB with Fermi is possible for a number
of jets in the next 5-10 years (3C 273 is #1 target) > fix B/ 6
- Can start to put tight constraints on B, equipartition

> A new Requirement of Jet Models
- What mechanism can produce extremely efficient, multi-TeV
particle acceleration to produce the second component?
- Jets must be “slow"” on kpc scales

» Ongoing work
- Fermi has a lot to contribute: high-E limits go down as 1/time
- We can continue to rule out IC/CMB X-rays in more and different
jets, but also possibly detect the IC/CMB emission that must be

there at some level.



Understanding Jet Impact on Environment
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Understanding Jet Impact on Environment

-~ - observed core
—— beaming-corrected core
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Understanding Jet Impact on Environment

- - observed core
—— beaming-corrected core
47 - e--- observed knots
— beaming-corrected knots
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Understanding Jet Impact on Environment

- - observed core
—— beaming-corrected core
47 — e--- observed knots
— beaming-corrected knots
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Understanding Jet Impact on Environment
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Large-scale jet may dominate blazar in total output at TeV energies
For 3C 273, § =2-5 implies IC/CMB from the X-ray synchrotron spectrum well
above the integrated TeV luminosity from BL Lacs (~ 10*! erg/s)




Conclusions

The IC/CMB model has been ruled out in 3 cases as the
mechanism for the high X-ray fluxes of some quasar jets.

We instead favor synchrotron models, but the origin is unknown
(and hadronic models are not ruled out) — this suggests less
powerful jets, but also a far greater radiative output on kpc scales,
including dominant TeV emission. This may have far-reaching
Impact from reionization to heating in galaxy evolution.

An extremely important contribution of Fermi all-sky monitoring will
be to continue the search for the IC/CMB emission from powerful
quasars, as IC/CMB detection enables direct measurement of B/ & .

When combined with proper-motion studies we can “solve” the
system, unambiguously determining important physical parameters
(angle, Lorentz factors, Doppler factor, Magnetic Field) - look for
proper motion results on 3C 273 in 2015 (HST observations in cycle
21)



